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Symmetries of groupsubgroup transformation factors for 
coupling, subduction and induction 

R W Haasei and P H Butler$ 
t Institut fur Theoretische Physik, Technische Universitat Wien, Karlsplatz 13, A-1040 
Vienna, Austria 
$ Physics Department, University of Canterbury, Christchurch 1, New Zealand 

Received 27 March 1985 

Abstract. Group-subgroup ( G H )  transformation theory uses G transformation coefficients 
and G H  transformation factors to describe the relationship between the various bases of 
a representation space of any group decomposed into irreducible representation spaces of 
the group and its subgroups. The representation spaces may be formed by the processes 
of coupling, subduction or induction. We further develop this G H  transformation theory 
with the study of the various symmetries (complex conjugation, transposition and associativ- 
ity) of the GH transformation factors, emphasising the origins of each symmetry and a 
hierarchy within these symmetries. A method of calculation is given for certain transforma- 
tion factors. The results and methods presented here generalise those of the Racah-Wigner 
coupling algebra. 

1. Introduction 

In a previous paper (Haase and Butler 1984a) we began a general introduction to what 
we have called the group-subgroup ( G H )  transformation theory. In that development 
several concepts of group theory and linear algebra were brought together. These 
included (i) reduction of representation spaces constructed by coupling, subduction 
and induction processes, (ii) the concept of G and GH bases and (iii) transformations 
between G H  bases leading to definitions of a variety of transformation coefficients 
and factors. 

Our development of this theory arose from consideration of the connection between 
the symmetric and unitary groups. We have called this relationship the Schur-Weyl 
duality. Many powerful equalities between certain transformation factors of the sym- 
metric groups and those of the unitary groups can be established by this duality (see 
Haase and Butler (1984b) and references therein). One of the important aspects to 
arise is the occurrence of the duality factors which relate phase freedoms in the 
symmetric group with those in the unitary groups. To determine the matrix structure 
of these duality factors we need to know their symmetries. 

With this aim in mind we continue the development of the G H  transformation 
theory, concentrating on ‘global’ symmetries which may be found within quite general 
group-subgroup schemes but excluding those symmetries which pertain to specific 
groups. Our discussion parallels those of Derome (1966), Derome and Sharp (1965) 
and Butler (1975) for the Racah-Wigner coupling algebra, which is viewed as a special 
case of our theory. 
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1066 R W Haase and P H Butler 

We begin with a general introduction of notation and terminology. This is presented 
in $ 2  along with remarks on phase freedom within the G H  transformation theory. 
Sections 3, 4 and 5 discuss respectively the symmetries of complex conjugation, 
transposition and associativity all with regard to coupled, subduced and induced 
representation spaces. We note a hierarchy within these symmetries. Specifically, the 
complex conjugation symmetry applies to all transformations within any representation 
space, whether just a single space or a direct product of two or more spaces. The 
transposition symmetry applies to direct products of two or more spaces, while a direct 
product of at least three spaces is required to display the associativity symmetry. For 
each symmetry we define a corresponding transformation factor which we call the 
complex conjugation factor, the transposition factor or the associativity factor. The 
symmetry hierarchy is emphasised by the fact that the transposition factor displays 
only complex conjugation symmetry, while the associativity factor displays both com- 
plex conjugation and transposition symmetries. We note that for any n-fold direct 
product group, the symmetries of the corresponding representation space can always 
be broken down to those of transposition and associativity. In particular this is shown 
for the fourfold product space from which is derived an important identity involving 
five associativity factors. This identity is used as a basis of a method for calculating 
associativity factors and parallels the use of the Biedenharn-Elliott sum rule in the 
calculation of 6 j  symbols (Butler and Wybourne 1976, Butler 1981). In $ 5 we outline 
this procedure for the associativity factors. 

In $ 6 we discuss the symmetries of the coupling, subduction and induction factors 
which are those special transformation coefficients that we collectively call defining 
factors (defining because these factors describe the process by which irrep spaces are 
constructed from other irrep spaces). We shall also present new identities relating 
associativity factors and defining factors. These identities are analogous to the Wigner 
relation of the Racah-Wigner algebra relating 6 j  and 3jm symbols. Continuing the 
analogy in which the Wigner relation is used to calculate 3 j m  symbols (see Butler 
1981), we propose a similar method for calculating the various defining factors. 

2. Phase freedom 

To begin we give some preliminary remarks on the G H  transformation theory (see 
also Haase and Butler 1984a). We define a G basis of a representation space V of a 
compact continuous or finite group as a set of orthonormal basis vectors 

{ / z y ( G )  i ) = ( z y i ) :  i = l  . . . l y l }  

labelled by the irreducible representations (irreps) y( G )  of dimension 171. In addition 
the action of the group operators 0, is chosen to be independent of the parentage 
label z of G; the irrep matrices are identical for all the different equivalent irrep spaces 

(z’ y’i‘J O,J zy i )  = S ~ ’ , S Y ’ ~ ~ ( ~ ) ’ ’ ~  

If two different G bases give an identical set of irrep matrices under the group action, 
they are termed equivalent G bases; if the two sets of irrep matrices are different, the 
G bases are said to be inequivalent. 

Similar statements can be made of a G H  basis. This basis is defined as a set of 
orthonormal basis vectors 

(2.3) { ( z y ( G ) a 7 7 ( H ) j ) ~ ( z y a 7 7 j ) :  a = l  . . .  Iy :V I ,  q ( H ) , j = 1  . . . / ? I }  
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that is simultaneously a G basis 

(z'y'a'r])j 'l  O,] z y a q j )  = s",6y',y(g)"'"'J',,j V g c  G (2.4) 

( z ' y f a ' r ] l j f l O g ~ z y a q j )  = 6z',6y',6a',r](gy", V g g  H. (2.5) 

and an H basis 

Two G H  bases are said to be equivalent if they give rise to identical sets of irrep 
matrices for both G and H ;  otherwise they are inequivalent G H  bases. 

We consider now a transformation between inequivalent G H  bases but equivalent 
H bases. Such a transformation has the form 

Izyar]j) = / z ~ a * r ] j ) ( ~ h  Iyar]). (2.6) 
The transformation factor (ya*r] I yar]) is an element of a unitary matrix on the indices 
a and 6, and it can be seen to change some of the irrep matrices of g E  G 

y(g)" 'v ' j '  q j  = ( Y ~ ' T ' /  Ya*'r]')Y(g)"''j'a,j(ya*r] I Y ~ T )  (2.7) 
but leave invariant those of g c  H. These transformations are important in what we 
have termed the G H  transformation theory which may be viewed as a generalisation 
of the Racah-Wigner coupling algebra. The transformation given by (2.6) specifies 
the freedom available in fixing the relative phase and multiplicity relationships between 
the basis vectors for a G H  basis. This 'phase freedom' enables one to choose a G H  
basis which satisfies certain symmetry requirements that one wants to impose. 

One can have general symmetries, such as the complex conjugation, permutation 
and associative symmetries, and symmetries arising from special properties of the 
group or groups in question, such as those symmetries generated by the one-dimensional 
irreps of a group (Butler and Ford 1979) and the Schur-Weyl duality symmetries of 
the unitary and symmetric groups (see Haase and Butler 1984b). We show how to 
give the matrices of the general symmetries their simplest possible form. 

As a general notational point, note that a transformation factor in Dirac notation 
takes the archetypal form (ya ' r]  1 y a q )  where ( y )  and (7) are termed group ( G )  and 
subgroup ( H )  labels respectively and always appear twice, and ( a ' )  and ( a )  are G H  
basis labels appearing only once. (A  transformation coefficient can be thought of as 
a G E  transformation factor with E as the identity group.) Thus for a recoupling factor 
(see 0 5 )  

((hCL)ar], v, bYlA(W)CK,  d Y )  
we identify ( h p v )  and ( y )  as the G and H labels, and ( a q b )  and ( c d )  as the G H  
basis labels. A coupling factor (see 0 6) 

( w a y b r ]  I(PCA, vdK)er]) 
has ( p v )  and (7)  as the G and H labels while ( a y b )  and (cAdKe) form the G H  basis 
labels respectively. Although we shall not be using the matrix form for these two 
factors, they could be written in the form 

( '9 Y ) n'bCKd, D( pv> r] )aybC,hdKe*  

For simplicity we will use the matrix form to denote the transformation factors 
describing symmetries found within the G H  transformation theory. Since phase 
freedoms play a key role in the choices of these transformation factors, the matrix 
form will also be used for them. Hence (2.6) is written 

Izrarlj)= Izya*r]j)U(y, T ) ' ~ .  (2.8) 
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The summation convention used throughout this paper is then to sum on only G H  
basis labels (Greek or Latin) that occur once in a bra or raised in a matrix and once 
in a ket or lowered in a matrix. 

In a similar manner as above, we may write down the phase freedom associated 
with the G basis { Iyv tay i ) }  of the induced representation space VyTr (see Haase and 
Butler 1984a) 

ly77Tayi)= lY77Ta*Yi)U(77T, r)". (2.9) 

For such a transformation the form of the irrep matrices of G remains the same. The 
similarity to (2.8) is due to the fact that the induced representation behaves in the 
reduced basis like any other representation of a group that has been decomposed into 
its constituent irreps. As we will see later this similarity recurs in the discussion of 
the symmetries of induced representation spaces. 

Furthermore a similarity exists between the pair of archetypal transformation factors 

(W'9 I ya77)1 (77Ta'yl . I t ay )  

which derives from the Frobenius reciprocity theorem. This states that the number of 
multiple occurrences of y ( G )  in 7 ( H ) T G  is equal to that of v ( H )  in y ( G ) .  Since no 
equality holds between the two factors, the matrix form for one can be chosen for the 
other. This also applies for other transformation factors related by the Frobenius 
reciprocity-more specifically, the reciprocity relates subduction factors with induction 
factors and resubduction factors with reinduction factors (see § §  5 and 6). 

3. The complex conjugation symmetry 

We use an operator approach similar to that given by Bickerstaff (1980) to obtain 
archetypal relations valid for any G H  transformation coefficient. For a discussion of 
the complex conjugation symmetry and the reality criterion for coupling coefficients 
see Bickerstaff and Damhus (1984) and Bickerstaff (1985). The definition of Bicker- 
staff's complex conjugation operator k, differs from that of ours in that we have 
removed the representation space dependence into a linear operator I ; ,  k, = 1;k. The 
complex conjugation operator k is an antilinear, unitary, involutary operator mapping 
t,he represecntation space V onto its complex conjugate representation sptace denoted 
V. (Note V may be equivalent to V.) That is, if a E @, I U ) ,  I U) E V,  16) E V then 

kk = e where e is the identity operator, (3.1) 

k *  l u )a=l f i )a* ,  (3.2) 

( k .  U I k U) = ( f i  I ; ) = ( U  1 U)*. (3.3) 

kO, = 0 , k  Q ~ E  G. (3.4) 

We shall also require that k commutes with all the group operators 

With the above criteria we consider the action of k on G bases of Vzy This action 
gives a unique basis, called the complex conjugate basis, for V;?, which is a G basis 
but not necessarily equivalent to the G basis already chosen for V;?. Thus we have 

k 1 zy i )  = 1 ijf) (3.5) 
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with the commutation requirement giving the group action on the basis {I?$)} as 

j ( g ) l ;  = y ( g ) j i * .  (3.6) 
This gives the 'matrix elements' of k as 

(?+jt.jl(k. zy j )=K(y ) j '=a j i .  

The antilinearity of k implies that 

( z y j  I kt . 2 T j )  K ( T)'" = K ( y ) J i * ,  

(3.7) 

(3.8) 
We have raised the ind5x i in the definition of the matrix K( y )  because, like the index 
j ,  the scalar product (?Tj I k zyi) is antilinear in i. The matrix K ( y )  is also independent 
of the parentage label since we only consider G bases. The involutary nature of k 
implies that the basis {I z y i ) }  given by "1 *I ** 

(3.9) 
(.* .I *.* kk. Izyi)=I z y I )  

is the same G basis as {Izyi)} 

j q g p y  = y(gy i .  (3.10) 

Similar statements can be made for G H  bases {Izyaqj)} by replacing ( i )  by ( a q j )  and 
also for G bases of VyTr, {IyqTayi)} by replacing ( z )  by (yqTa).  

As stated above, the complex conjugate basis is not necessarily the chosen G basis 
for V:;. A transformation is required, for example 

I?$) = l?j4')A(T)''; (3.11) 

or if { ( zy ; ' ) }  is the complex conjugate basis formed from the G basis {I fTi ' ) }  

lzyj') = Izyi)A(y)'; , .  (3.12) 

Bickerstaff (1980) calls A( T )  a complex conjugation matrix and its elements complex 
conjugation coefficients. We call them simply the A matrix and A coefficients (after 
Derome and Sharp 1965). They have the unitary property 

(3.13) A( +)'';A( jp,. = ai',,, A( . t ) + ' , , ~ (  T)';. = 6''. 
We associate the linear operator I ;  with each A matrix. It has matrix elements 

(?Ti'lI;l?T~)=A(T)"~. (3.14) 

The operator (l,kl;k) is a linear operator mapping the G basis of V, into an equivalent 
G basis. By Schur's lemmas we then have 

(l7k1;k) = {rle (3.15) 

where { y }  is called a l j  phase. A simple manipulation starting from (I;kI,k) = 
(l$)(17kl;k)(l;k)t implies ( 9 )  = { y } * .  In terms of the A coefficients (3.15) gives 

A ( ~ ) ' ; , A ( T ) ' ' ; *  ={y}t j ; .  (3.16) 

The A coefficients are related to the 2jm symbol of the Racah-Wigner coupling algebra 
(see Butler 1981) 

(3.17) 

However, we use the above notation and terminology since we want to establish a 
more general setting for the complex conjugation symmetry within the G H  transforma- 
tion. One result is the following. 
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Given any transformation between alternative G bases of V,, say ( y i  1 yj) ,  the 
complex conjugation operator induces a similar transformation between alternative G 
bases of V;; 

(ti'l tj') = A(  +)";( yi I yj)*A( t)",.. (3.18) 

This relation is the archetypal relation of the complex conjugation symmetry for any 
transformation coefficient. It is applicable not only to single irrep spaces V,, but also 
to direct product irrep spaces V,, 0 V,, = VyIOy2. In particular the complex conjugation 
symmetry of the coupling coefficients, called the Derome-Sharp lemma in the literature, 
can be derived from (3.18) (see Bickerstaff 1980). However, to show this one needs 
to consider the complex conjugation symmetry with respect to a G H  basis. 

The action of k on a G H  basis can be defined as 

(3.19) * * * * *  k .  lzyagj)= Izyagj). 

We use (3.12) to transform this complex conjugate basis to the chosen H basis 

litA$]) = I??;$j')A($)';, (3.20) 

Still the G H  basis { l i th$ j ' ) }  may not be the chosen G H  basis for V;; and a further 
transformation may be required. This introduces the complex conjugation factor 

l i@$j)  = i?i.a';U")A( ?, $)" ' ;A(  $ ) / ' J  (3.21) 

(cf (2.8)). The factorisation of (3.21) into two transformations is the result of the fact 
that the G H  basis is simultaneously an H basis. From the properties of k the A factors 
satisfy the following: 

(3.22) 

(3.23) 

A ( y ,  p )a i 'A(? ,  $ )" '6*={y } {g }*aab .  (3.24) 

Applying the complex conjugation operator to inequivalent G H  bases but equivalent 
H bases gives 

(?b'+ I ?a'$) = A(  t, $ ) b ' ; (  yb7 I yag)*A( ?, $)  "a,. (3.25) 

This relation describes the complex conjugation symmetry for any G H  transformation 
factor, in particular for the coupling factor and the subduction factor. Next we consider 
the complex conjugation for induced representations. This aspect has not been pre- 
viously discussed in the literature. The results are similar to the above. 

The action of k on the G basis of an induced representation space is defined in 
an analogous way to the action of a G H  basis: 

k .  lyTTayi)= lj$jTii$) = l;+Tu'Ti')A(?T, q ) 4 ' ; A ( + ) 1 ' ;  (3.26) 

(cf (3.22)). The A factor A(  $?, ?) transforms between the intermediate basis {Ij$?@i')} 
and the chosen G basis {IJ+ta'?i ')}. These A factors can be shown to have the properties 

A(+? ,  ? ) + a a * A ( $ t ,  ?Ia ' ;=aba ,  (3.27) 

A ( $ ? ,  ? )" ' ;A($? ,  a a ' b ' ,  (3.28) 
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The last result follows from the fact that k commutes with the group operators (in 
particular the coset operators of G/ H) and from the irreducibility of 7 ( H ) .  Further- 
more if the induction factor (7Tby  I ~ T a y )  describes the transformation between two 
alternative G bases for Vyvt then the complex conjugation operator induces a transfor- 
mation between G bases of V G ; ~  

( i ? b ' t l  $?a '? )=  A($? ,  t )b 'b (7?bY I 7Tay)*A($?, t)+b"'. (3.30) 

This relation describes the complex conjugation symmetry for any induction factor. 
Having defined the complex conjugation factors A(  7, $ ) a ' a  and A(  GT, f)"', we 

now determine their matrix structure. The possible matrix choices are given by the 
phase freedom matrices of (2.8) and (2.9). In matrix form we have 

4% $1 = U(?,  $ ) A ( + ,  i ) U ( Y ,  TIT, 

m, t) = U ( $ ? ,  ?)A($? ,  t ) U ( 7 ? ,  Y)T. 

(3.31) 

(3.32) 

Since the complex conjugation symmetry is a symmetry which can be imposed for any 
and every type of transformation factor we assume that complete phase freedom exists 
and that all the various types of complex conjugation factors will take the same matrix 
form as the archetypal A( y, 7) and A(  q?, y )  which we now give. Bickerstaff (1980) 
has discussed the choices for the former. The argument extends simply to the latter. 
Two cases arise. 

(1) If y or 7 is a complex irrep we can always choose 

since in (3.31) and (3.32) U ( y ,  7) and U(?,  $) (respectively U ( T ? ,  y )  and U ( $ ? ,  t)) 
are distinct. 

(2) If y and 7 are both real then by (3.24) and (3.29) we have two possibilities. 
(a)  If { y } {  7}* = +1 then A( y, 7) and A( q?, y )  are symmetric matrices. However, 

we can still make the choice 

(b)  If { y } { 7 ) *  = -1 then A ( y ,  7) and A ( v ? ,  y )  are skew-symmetric matrices and 
may be chosen 

where J = 

of the A factors, we must constrain the phase freedom matrices by 

;') 0 1. 
In requiring that any other G H  transformations do not change the above choices 
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In particular for case (3.34), U (  e ,  . ) must be real and hence orthogonal, while for 
case (3.35) we have a symplectic U (  ., e ) .  

Although the above choices would appear to be the simplest it must be remembered 
that other choices do exist and may be more desirable; for example, other choices of 
transformation factors may turn out to be real. To illustrate this point we refer the 
reader to the table of SU3 6j symbols of Bickerstaff e? a1 (1982). If their unity choice 
of the A matrices for the coupling {21} x (21) 2 (21) is replaced by 

A(21 21,21)=(  1 0  ) 
0 -1 

(3.38) 

the 6 j  symbols containing this coupling take real values (Sullivan 1983). 

4. The transposition symmetry 

The appearance of a direct product group, H x K say, in a group-subgroup ( G H )  
chain leads to a further symmetry-that of transposing the two groups H and K .  When 
the two groups are the same the symmetry is non-trivial. In this section we give a 
detailed discussion of the transposition symmetry with respect to coupled, subduced 
and induced representation spaces. The three types of spaces reflecting the transposition 
symmetry are labelled by the bases 

(A) of coupling 

(B) of subduction { l z  y ( G )  a ~ K ( H  x K ) j k ) ) ,  (4.1) 
(C) of induction 

{ I X Y  ~ K ( H  x K )  a y ( G )  i)), 

{IXY W ( H  x K ) T G a  y ( G )  i ) ) ,  

where x, y ,  z are parentage labels of 7, K ,  y respectively. 
We define the transposition operator 7 as a linear unitary, involutary operator 

mapping the direct product space VI@ V, into V20 VI; that is, (Y E @; IuJ, I u ~ ) E  VI; 
Iu2), l 4 ) E  v2; 

rr = e, (4.2) 

7. lu1u*)a = Iu2uI)a, (4.3) 

( 7  * U U; I 7 U1 U2) = (U;U I U z U l ) .  (4.4) 
The action of 7 on the basis vectors (4.1) defines then what we have called the 
transposition factors or more simply the T factors. Like the phase freedom factors 
and the A factors, they describe the transformation from the G H  basis labelled in part 
by ~ K ( H  x K )  to the G H  basis labelled by K ~ ( K  x H ) :  
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For the special case when K ( K )  = 77 (H) the T matrices must be Hermitian. This will 
be important when we come to making choices of the T factors. The complex 
conjugation symmetry follows immediately from (3.25) and (3.30) by replacing the 
labels y (  G) and v ( H )  with the appropriate T K ( H  x K )  and y (  G) labels. Thus we have 

(A) T ( $ k  ?) = A ( ; $ ,  ? ) T ( w ,  y)*A(%, ?I+, 
(B)  T(?, $ k ) = A ( ? ,  ~ $ ) T ( Y ,  w ) * A ( ? ,  %)', (4.7) 

(C 1 
Special attention must be given to two cases. 

give 

T(+%?, ?) = A ( W ,  ? ) T ( v ? ,  y)*A(%?, ?)'. 

( 1 )  If H = K, K = 6 # 7 and 4 = y ,  we can combine (3.24) and (3.29) with (4.7) to 

(A) 

(B) T(Y, i 7 7 7 ) 4 Y ,  $77) ={Yl [T(Y ,  $77)A(Y, i77)IT, (4.8) 

(C) 

That is, the product T ( .  . . ) A ( .  . . )  is symmetric if y is orthogonal and skew-symmetric 
if y is symplectic. 

T($771 Y)A($77, Y )  ={YHT($77, Y)A($% Y)l'l 

T(i77?, Y ) A ( i B ? ,  Y )  = {YHT($77?9 Y ) 4 $ 7 7 ? ,  YII'. 

( 2 )  If all the irreps are real, the T matrix satisfies 

T ( .  . . ) A ( .  . . ) = A ( .  . . ) T ( .  . .). (4.9) 

For all other cases the symmetries given by (4.6)-(4.7) relate distinct T matrices. 

must be established: 
To determine the possible matrix choices for the T matrices the phase freedom 

(A) %-K, Y )  = U(K77, Y)T(77K, Y)U(77K, Y I T ,  

f ( V L  Y ) =  U(K77?, Y)T(77KT, Y)U(TlK?, Y ) + .  

(B) f ( Y ,  v )= U(Y,  KT)T(Y, 77K)U(Y, w) - ,  (4.10) 

(C) 

Each U ( .  . .) is subject to constraints (3.36)-(3.37). However, there is still sufficient 
freedom to choose all T matrices diagonal: 

(A) %K, Y Y a  = {77KaYw',, 

(a f h T ,  Y ) " ' a  = {77K?aYPa',, 

(B) f ( Y ,  7 7 K ) a ' a  ={Ya77KlSa'a, (4.11) 

where { TKay}, { yavK} and { TKfay}  are phases which we shall call transposition (or 
T )  phases and are arbitrary except when: 

(a) 77 = K and H = K. By (4.6), T ( .  . .) is Hermitian and 

{77?7ayl = Iya77rll = {7777?ay} = * I .  (4.12) 

The T phases are fixed by the character theory of symmetrised Kronecker squares. 
(b) K = ;I # 77 and H = K. Then 
(i) if { y }  = + 1 ,  the T phases are arbitrary for all a; 
(i i)  if { y }  = -1 ,  the T phases corresponding to a T matrix are fixed in pairs but 

are otherwise arbitrary. The multiplicity in these cases is always even. 
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The form of the T matrices of (a) and (b) can always be chosen as 

(4.13) 

with U,, U, as unit matrices and D and D' diagonal matrices. 

freedom matrices must be further constrained: 

(A) 
( B )  U(Y,  K T ) =  T(Y ,  T K ) U ( Y ,  T K ) T ( Y ,  T K ) ' ,  (4.14) 

(C) 

For the choices to remain invariant under further GH transformations the phase 

U(KT,  Y ) =  T( 'VK,  Y ) U ( T K ,  Y ) T ( T K ,  Y ) ' ,  

U ( K ' V ? ,  Y ) =  T ( T K ? ,  Y ) u ( T K ? ,  Y ) T ( T K ? I  Y ) ' .  

In the case T (  If) = K (  K )  the restrictions imply that the corresponding phase freedom 
is block diagonal, 

(4.15) 

Given any transformation factor referring to bases containing a direct product of 
two or more groups, the transposition operator can be used to induce a transformation 
in the 'transposed' space. We can write the archetypal equations as 

(A) ( ~ ~ b ' y  1 K W ' Y )  = T ( w ,  y ) b ' b ( T K b y (  ' V K Q Y ) T ( T K ,  Y)'",,, 

( B )  ( ? b ' K v  I y a r K T ) =  T ( y ,  T K ) b ' b ( y b T K  1 y a ' V K ) T ( y ,  T K ) " a ' ,  (4.16) 

( C )  ( K T ? b ' y l K T ? a ' T ) =  T ( T K ? ,  y ) b ' b ( T K T b y l  ? K f a ? ) T ( T K ? ,  ?)'"a'. 

Haase and Butler (1985) and Haase and Dirl (1985) exploited this transposition 
symmetry to obtain relations between 3jm symbols of U,, 2 U, x U, and those of 
U,, 2 U, x U,,, and between 3jm symbols of Sf,+,> 3 S ,  x S,, and those of Sf2+,! 3 S,, x S,. 
We have 

rt  

- - ( ,'; n't 1 T('Y,, T I K I ) ~ ' ~ , T ( Y ~ ,  T 2 K 2 ) " a 2 T ( Y 3 ,  T 3 K 3 ) a ' a 3 .  

K 1 9 1  K 2 T 2  K3773 IS 

(4.17) 

(Note the independence of the symmetry with respect to the coupled product multi- 
plicity labels r, s, t.) In the algebraic formula of some 3jm symbols the factors ( m  - n )  
for U,, and (fl -fi) for Sfi+,> may appear. The transposition symmetry explains the 
null values of these 3jm symbols when m = n and I; =fi respectively. 

5. The associativity symmetry 

A further symmetry arises when there occurs a direct product of three or more 
groups L, M,  N, . . . . There is then more than one way of forming pairwise the direct 
product of these groups. Indeed if there are n groups the number of ways of forming 
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the n-fold direct product, without including permutations of the groups, is given by 
the recursive formula 

n-1 

a ( n ) =  C a ( m ) a ( n - m )  
1 

with a(0 )  = a(1) = 1. 

The first few terms, n = 2, 3, 4, 5, 6, take the values a ( n )  = 1, 2, 5, 14, 42 respectively. 
In this section we will only be considering the direct product of three and four groups. 
In general the n-fold direct product can always be reduced to the consideration of 
threefold products as we will show for the fourfold direct product. This last case will 
lead to important identities. 

There are two ways of pairing the direct product of three groups L, M, N given a 
particular order. These are denoted ( (  L x M )  x N ) )  and ( L  x ( M  x N ) ) .  Thus, given 
the irreps A(L) ,  p ( M ) ,  v ( N )  and a process by which they are paired (that is, either 
coupling, subduction or induction) the associativity symmetry then gives two different 
GH chains for labelling the basis vectors. The scalar product between these two basis 
vectors defines the recoupling, resubduction and reinduction factors (see Haase and 
Butler 1984a): 

(A) ((ApIa71, V, bYIA(PV)CK, dY),  

(B) ( yarl (bAP 1 V I Y C A K  ( d v ) ) ,  (5.1) 

(C) 

We will collectively call these three factors associativity factors-the term being taken 
from algebra. They have similar properties. The complex conjugation symmetry is 
obtained from (3.25) and (3.30): 

(A) ( ( i b ) u ' $ ,  5, b ' + 1 i ( b 5 ) c f k ,  d ' t )  

((Ap)Tag, V, TbY IA(CLY)TCK, TdY) .  

=A(i jL,  $)a';A($5, . t )b';((Ap)a7,  V, ~ ~ ! A ( ~ v ) c K ,  dy)* 

X A(;;,  k)"C,A(Ak, t ) t d d r ,  

(B) ( t a ' $ ( b ' i f i ) t l  t c ' i k ( d ' F 5 ) )  

Note that the A matrices have been diagonalised with respect to the intermediate group 
labels. This factorisation is a consequence of the fact that this GH transformation 
can always be performed by a two-step transformation procedure, the one independent 
of the other (cf (3.21) and (3.26)). 

The transposition symmetry generates two further symmetries. Their derivation 
may be seen more clearly by the schematic diagram of figure 1. This gives the 
relationship between the 2 x 3 ! possible ways of pairing L, M, N including permutations 
of the groups. The relationships are generated only by the associativity symmetry 
denoted by the full lines and the transposition symmetry denoted by the broken lines. 
Again we specify a process of forming irrep spaces in accordance with the way the 
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[ ( N x L ) x  M )  ---- --- - (M. ( N x L l )  

Figure 1. 
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From figure 1 note that although we have a threefold direct product group, the 
transposition symmetry involves only a twofold direct product. The corresponding T 
matrix can be chosen independent of the group labels of the third group. This 
factorisation has been used in obtaining the above identities. 

Let us now consider GH chains containing a fourfold direct product group. As 
given earlier, there are five ways of forming the product by pairing but without 
permutations. These are given in figure 2.  They are arranged in a particular order. 
Those connected by a line contain a common pairing. For example ( K  x L )  is the 
common pairing of (( ( K  x L )  x M )  x N )  and (( K x L )  x ( M  x N ) ) ,  while K x K‘ with 
K’ the resultant group of L x M x N is the common pairing of ( K  x ( L  x M )  x N )  and 
( K  x ( L  x ( M  x N ) ) ) .  Given the coupling, subduction or induction process by which 
the fourfold direct product space is paired, the transformation represented by the full 
line in figure 2 can be chosen independent of the common pairing. In this way the 
transformation coincides with the corresponding associativity factor. Furthermore, in 
traversing the path connected by the full lines we derive the following important 
identities for the various associativity factors: 

(A) ( ( P P ) ~ T ,  v, by I ~ ( p v ) c . r ,  d y ) ( ( ~ A ) c ’ p ,  .r, d y  I K ( A T ) ~ ’ E ,  b‘y)  

x ( ( A p ) d ’ g ,  v , f & l A ( p v ) c ~ ,  a ’&) ,  

= ( ( K ~ ) c ‘ P ,  p, I K ( A F ) ~ ’ ~ ,  e v ) ( ( ~ a ) e v ,  v, by I ~ ( a v ) f ~ ,  b ’ r )  

(B) ( Y ~ T ( ~ P c L )  v 1 YCPT(dpv))(YCP(d’KA ya’Ke(b’AT)) 
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The importance of these identities (5.5) and those giving the symmetries (5.2)-(5.4) 
lies in the use of the recursive method for calculating the values of these associativity 
factors. In particular if we consider the coupling process taking all groups to be 
equivalent to each other, that is K = L = M = N E .  . . = G, then the identities (5.2)-(5.5) 
are all well known in the Racah-Wigner coupling algebra. The recoupling factor is 
proportional to the higher symmetry 6 j  symbol (see Butler 1975, equation (9.13)). 
Substitution into (5.2)-( 5.5) gives respectively the complex conjugation symmetry of 
the 6 j  symbol, the 'row-flip' symmetry of the 6 j  symbol, the Racah back-coupling 
relation and the Biedenharn-Elliott sum rule. These 6 j  relations have been used 
extensively in the building-up method for the calculation of 6 j  symbols for both the 
finite point groups (Butler and Wybourne 1976, Butler 1981, Butler and Reid 1979, 
Reid 1984) and some compact continuous groups (Butler er a1 1978, 1979, Bickerstaff 
er a1 1982). Algebraic formulae have also been obtained for some U,, 6 j  symbols 
(Haase and Butler 1985) and some symmetric group 6 j  symbols (Haase and Dirl 1985). 
A similar method of calculation employing the above equations could be applied to 
all three types of associativity factors. The procedure is as follows. 

The phase freedom of each associativity factor must be determined. We have 

Note that each U ( .  . .) refers in general to a G H  transformation for different G H  
chains. If the choices of the A and T matrices are to be used, the phase restrictions 
(3.36)-(3.37) and (4.14) must be incorporated into (5.6). If phase freedom exists for 
an associativity factor, an arbitrary choice can be made within the range specified by 
the unitary conditions and symmetry relations of the factor. If such a choice is to 
remain invariant under any further phase freedom choices, we have to impose a 
restriction on one phase freedom fixing it relative to the other three phase freedoms 
appearing in (5.6). 

If no phase freedom exists for a factor, it may be calculated by either unitary 
conditions, the symmetry relations (5.3)-(5.4) or equation (5.5). In (5.5) we note that 
the five associativity factors belong in general to five different but related G H  schemes. 
Thus the calculation would be performed by initially calculating associativity factors 
of four of the G H  schemes which then completely fixes the relative phase freedoms 
in the fifth G H  scheme. In this manner associativity factors are determined by building 
up from other associativity factors. In the case when all G H  schemes are the same 
(that is, the Racah-Wigner coupling algebra) the so-called power of the irrep (see 
Butler and Wybourne 1976) becomes an important criterion by which irreps of one 
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power are built up from irreps of lower power by coupling to the primitive (or defining) 
irrep of the group. 

6. The defining factors 

In Haase and Butler (1984a) we defined three transformation coefficients: 

( A )  coupling coefficient ( W Y i  Ipvmn),  

(B) subduction coefficient 

(C) induction coefficient 

( yapvmn I  ri), 
( P V t  ayi I PvTPmn). 

Each coefficient defines a process by which one can form irreducible spaces from other 
irreducible spaces. Hence collectively we shall call them defining coefficients. By 
choosing an appropriate subgroup basis we obtained a corresponding defining factor: 

(A) coupling factor ( P V b r l  I b C A ,  V d K k r l ) ,  

With regard to these factors we derive in this section three identities, one for each of 
the processes. These identities relate an associativity factor of some GH scheme with 
an associativity factor of a 'lower' GH scheme ('lower' in the sense of a reduction to 
a subgroup) and four defining factors-the type of factor involved depends on the 
process. In connection with these identities we discuss a method of calculating the 
various defining factors. The method is again based on the building-up method (Butler 
and Wybourne 1976). This is a systematic methodology for computing 3jm symbols 
(symmetrised coupling factors) using symmetry equations and the Wigner relation (see 
Butler 1981, equation (3.3.29)) which relates a 6 j  symbol of a group to that of a 
subgroup via four 33" symbols. The corresponding symmetry and Wigner relations 
form the basis for the calculation of defining factors. 

We begin with the symmetries. The complex conjugation symmetry can be obtained 
directly from (3.21) and (3.25): 

(A) ($ta'?b'$ l(bc'i, 5 d ' i ) e ' i )  

= A ( b t ,  t ) a ' ; A (  ?, ;7)b' i(pvaybrl I (/MA, vdK)eT)* 

X A($,  i ) t 'c ,A(C,  k)+'d-A(ik, 

(B)  ( ? u ~ ~ ( b ~ ~ ) ~ ( c ~ ~ ) l ? d ~ i e ' i ~ )  

= A ( ? ,  $5)u';A($, ,i)b'l;A( 5, k ) " ; ( y a p ( b h ) v ( ~ ~ ) (  ydTehK)* (6.3) 

XA(T, $)t'd,A($, 

(C) (iitTa'?b';7 1 q ( $ c ' i ,  t d ' k )?e '$ )  

= A(bC?, ?)"'A?, $ ) b ' i ( ~ v ? a y b r l  1 q(pcA, vdK)Terl)* 

X A($,  i ) t 'c ,A(C,  c)t'dsA(AkT, $ ) t ' e r ,  
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while the transposition symmetry is a simple application of (4.10) and (4.11): 

(A) ( v w ’ y b v l ( ~ d ~ ,  pcA)e ’v )  

Again suitable factorisations of A and T matrices have been employed. 
The analogous Wigner relations can be obtained from the three equations (2.151, 

(2.9) and (5.9) of Haase and Butler (1984a). Detailed proofs are tedious to present 
and are not given here. In outline we take the following steps. 

( i )  Choose the appropriate ‘lower’ G H  scheme. 
(ii) Factorise the defining coefficients into defining factors and defining coefficients 

(i i i)  Recombine the ‘lower’ defining coefficients to form an associativity factor of 
corresponding to the ‘lower’ G H  scheme. 

the ‘lower’ G H  scheme. 
The results are as follows: 

The calculation of the defining factors would be performed after the associativity 
factors for both the G H  scheme and the ‘lower’ G H  scheme have been obtained. One 
then proceeds by determining the phase freedom for each defining factor: 
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If a phase freedom exists for any factor, one makes a choice subject to the restrictions 
imposed by previous choices of A matrices, T matrices and associativity factors, and 
also the magnitude conditions given by unitarity. If no freedom remains for the defining 
factors, it is then calculated by either the unitarity condition, or (6.5) by choosing a 
suitable associativity factor. One important consideration which does not arise from 
any phase freedom arguments is the question of the ‘orientation phase choice’ (Reid 
and Butler 1982). This choice arose in the 3jm calculation of some point groups and 
SU3 2 SO3, and appears to be related to the different possible embeddings of a subgroup 
in a group. However, as pointed out by Reid and Butler the exact nature of this choice 
is unclear, and the application of such choices in the present context of defining factors 
requires further investigation. 

7. Summary 

Our study of the Schur-Weyl duality which relates the symmetric and unitary groups 
has led to our formulating the G H  transformation theory. In particular, the possible 
choices of the duality factors must be considered simultaneously with symmetries of 
the factors. The discussion in this paper of the global symmetries within G H  transfor- 
mation theory gives general results needed for the study of the particular symmetries 
of the duality factors. 

We have also proposed in this paper a method for calculating the various associativ- 
ity and defining factors. This method is a generalisation of the building-up method 
used to calculate 6 j  and 3jm symbols given by Butler and Wybourne (1976). That 
method has been successfully applied to point groups (Butler 1981) and some compact 
continuous groups (Butler et a1 1978, 1979, Bickerstaff et a1 1982). Algebraic formulae 
for the unitary and symmetric groups have also been obtained (Haase and Butler 1985, 
Haase and Dirl 1985). Numerical values and algebraic formulae of other symmetric 
and unitary group transformation factors are then possible, thus furthering the scope 
of the Schur-Weyl duality (cf Bickerstaff et al 1982, § 4 and Haase and Dirl 1985, § 7). 

As a final remark the G H  transformation theory does not only have application 
to the Schur-Weyl duality and its generalisation (Haase et a1 1984). It is also relevant 
to the many-body system of particles which arise in many areas from molecular physics 
to atomic physics and nuclear physics to elementary particle physics. The techniques 
of the conventional Racah-Wigner algebra of angular momentum theory have long 
been used and are well known, but its generalisation ( G H  transformation theory) has 
been less often applied, with few attempts to use it in induced representation theory. 



1082 R W Haase and P H Butler 

Acknowledgments 

We would like to thank Dr R P Bickerstaff and Dr R Dirl for many useful discussions. 
One of us (RWH) has benefited from the support of the Austrian FWF (Fonds zur 
Forderung der wissenschaftlichen Forschung, Project No P5 170). 

References 

Bickerstaff R P 1980 PhD thesis University o f  Canterbury, New Zealand 
__ 1985 Lett. Math. Phys. 10 1-6 
Bickerstaff R P, Butler P H, Butts M B, Haase R W and Reid M F 1982 J. Phys. A :  Math. Gen. 15 1087-117 
Bickerstaff R P and Damhus T 1984 hoc .  23th Int. Colloq. on Group Theoretical Methods in Physics, College 

Butler P H 1975 Phil. Trans. R. Soc. A 277 545-85 
- 1981 Point Group Symmeiry Applications: Methods and Tables (New York: Plenum) 
Butler P H and Ford A M 1979 J. Phys. A: Math. Gen. 12 1357-65 
Butler P H, Haase R W and Wyboume B G 1978 Aust. J .  Phys. 31 131-5 

Butler P H and Reid M F 1979 J. Phys. A :  Math. Gen. 12 1655-65 
Butler P H and Wybourne B G 1976 Int. J. Quantum Chem. 10 581-98 
Derome J-R 1966 J. Marh. Phys. 7 612-5 
Derome J-R and Sharp W T 1965 J. Math. Phys. 6 1584-90 
Haase R W and Butler P H 1984a J. Phys. A: Math. Gen. 17 47-59 
- 1984b J. Phys. A:  Math. Gen. 17 61-74 
- 1985 J. Math. Phys. 26 1493-513 
Haase R W, Butler P H and Dirl R 1984 Proc. 13th Int. Colloq. on Group Theoretical Methods in Physics, 

Haase R W and Dirl 1985 J. Math. Phys. to be published 
Reid M F 1984 J. Phys. A:  Math. Gen. 17 1755-9 
Reid M F and Butler P H 1982 J. Phys. A:  Marh. Gen. 15 1087-108 
Sullivan J J 1983 J. Math. Phys. 24 424-40 

Park, Maryland, May 1984 ed W W Zachary (Singapore: World Scientific) 

- 1979 Ausi. J. Phys. 32 137-54 

College Park, Maryland, May 1984 ed W W Zachary (Singapore: World Scientific) 


